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Gene dispensability
Ryszard Korona
Genome-wide mutagenesis studies indicate that up to about

90% of genes in bacteria and 80% in eukaryotes can be

inactivated individually leaving an organism viable, often

seemingly unaffected. Several strategies are used to learn what

these apparently dispensable genes contribute to fitness.

Assays of growth under hundreds of physical and chemical

stresses are among the most effective experimental

approaches. Comparative studies of genomic DNA sequences

continue to be valuable in discriminating between the core

bacterial genome and the more variable niche-specific genes.

The concept of the core genome appears currently unfeasible

for eukaryotes but progress has been made in understanding

why they contain numerous gene duplicates.
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Introduction
Classic genetic studies required that a phenotypic change

was observed first and then a gene responsible for it was

identified and possibly scored as a new one. As a result,

genes that do not contribute or contribute little to the

most often studied traits were largely neglected. After the

first complete genomic sequences were released and then

sequence-informed mutational studies were completed,

researchers were suddenly faced with long lists of genes

which were apparently active but could be deleted with-

out causing conspicuous phenotypic effects [1]. These

genes were called ‘dispensable’, the term is now used

without quotation marks although its original meaning

was that a gene is not necessary for growth under defined

conditions. The present review concentrates on recent

empirical work that seeks to determine how many genes

are seemingly dispensable and whether their scores can

be significantly reduced by measuring phenotypic differ-

ences with high accuracy and in many environments. It

also briefly reports on new comparative studies of genome
www.sciencedirect.com
sequences that approach the question of essentiality and

dispensability of genes by examining their history.

Prevalence of dispensable genes
A relatively easy way to obtain large numbers of mutants

in bacteria is to prepare a library of clones with possibly

single transposon-mediated inserts and then determine

their location in the genome. It is assumed that the

presence of an alive clone with a disrupted gene marks

gene dispensability while absence marks essentiality.

This is an obvious source of error as the distribution of

transposon insertions is heterogeneous and some loci may

be never hit. Furthermore, disruption of a gene need not

mean its full inactivation and may influence activity of

adjacent genes. Finally, clones with strong growth defects

can be viable but are lost during growth in a mutagenized

culture. Most of these difficulties are avoided when an

alternative approach, individual targeting of every gene,

is adopted. Ideally, an entire gene is replaced by a marker

cassette. Only a few studies applied the last method so far

(Table 1.). The number of essential genes identified in

this way tends to be smaller than in random transposon

mutagenesis. Indeed, an early insertional study of Escher-
ichia coli reported six hundred essential genes [2] but a

subsequent deletion study cancelled a half of them [3].

Generally, it appears that for many bacteria, although

probably not for all, only about three hundred single gene

deletions are lethal under laboratory conditions. This

number is roughly similar for organisms of very different

lifestyles and total genome sizes.

Yeasts are as easy to manipulate genetically as bacteria,

they also offer an opportunity not accessible for the latter,

that is, an efficient way of creating and maintaining a

lethal knockout in a heterozygote. The first ever organism

for which a systematic collection of whole gene deletions

was done was Saccharomyces cerevisiae, the last reported so

far was Schizosaccharomyces pombe (Table 1). In case of

multicellular eukaryotes, both random and targeted muta-

genesis techniques are accessible but saturated genome-

wide collections of mutants are essentially absent [4].

Progress is slow because technical difficulties are much

greater than in yeasts while costs can be three orders of

magnitude higher. In some eukaryotes, the RNA inter-

ference can be used to silence virtually every single gene.

An experiment of this type was done with Caenorhabditis
elegans and suggested that individual silencing of about

one tenth of genes leads to death or infertility [5].

However, a critical review of literature suggests that a

range of 15–30% is more likely [6]. This is because RNA-

mediated gene silencing must relatively often result

in false findings [7]. In Drosophila, both old and new
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Table 1

Prevalence of essential genes in unicellular organisms.

Organism NPCG
a NE (%)b Medium Method Ref.

Mycoplasma genitalium 482 382 (79) Rich Random transposon insertion [39]

Mycoplasma pulmonis 782 405 (52) Rich Random transposon insertion [40]

Francisella novicida 1574 396 (25) Rich Random transposon insertion [41]

Haemophilus influenzae 1737 670 (38) Rich Random transposon insertion [42]

Staphylococcus aureus 2632 351 (13) Rich Random transposon insertion [43]

Corynebacterium glutamicum 2993 658 (22) Rich Random transposon insertion [44]

Acinetobacter baylyi 3197 499 (16) Minimal Targeted whole gene deletion [45]

Vibrio cholerae 3887 789 (20) Rich Random transposon insertion [46]

Mycobacterium tuberculosis 3918 614 (16) Rich Random transposon insertion [47]

Bacillus subtilis 4245 271 (6.4) Rich Targeted plasmid insertion [48]

Escherichia coli 4288 299 (8.0) Rich Targeted whole gene deletion [3]

Salmonella typhimurium 4425 257 (5.8) Rich Random insertion-duplication [49]

Pseudomonas aeruginosa 5565 335 (6.0) Rich Random transposon insertion [50]

Schizosaccharomyces pombe 4914 1260 (26) Rich Targeted whole gene deletion [51��]

Saccharomyces cerevisiae 5797 1105 (19) Rich Targeted whole gene deletion [1]

a Total number of protein coding genes according to the most recent publications or specialized web pages as of February 2011.
b Number of essential genes as stated in the cited source publications.
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Distribution of fitness effects in genomic collection of gene deletions. (a)

Density of cultures composed of individual E. coli deletion strains after a

defined period of growth [3]. (b) Relative growth rates of homozygous S.

cerevisiae deletion strains propagated in a common culture [52].
experiments indicate that some 25–35% of genes are

essential [8,9��]. In mouse, over 40% of existing null

mutations obtained through targeted insertion or deletion

results in lethality or infertility but the sample covers less

than one fifth of genes and is highly biased [10,11].

Chemical mutagenesis of mouse, dense but inherently

random, yielded highly variable estimates with a range

from 20 to 40%, or wider [12]. In sum, eukaryotes have

probably several times more essential genes than prokar-

yotes, both in terms of numbers and proportions. Unlike

in bacteria, it is rather the proportion than the number of

essential genes that may be roughly similar in different

eukaryotic model organisms.

Measuring gene (in)dispensability
Mutagenesis and screening for phenotypic effects of

mutations on a polygenic trait, or fitness, typically yields

a bimodal frequency distribution with one peak formed

by lethal and the other by weak effects [13]. The abun-

dance of small phenotypic changes appeared understand-

able as long as the applied mutagenesis frequently

resulted in only partial gene inactivation. But, whole gene

deletions also generate a bimodal distribution with an

especially strong peak of small or unobservable effects

(Figure 1). The bimodality is seen not only when the

whole genome is considered but also within its subsets,

such as genes coding for large protein complexes [14].

This leads to a basic question: what saves ‘dispensable’

genes from a gradual mutational decay by accumulation of

minor lesions if complete loss of their activity does so

little harm [15]? It has been long speculated that their

metabolic role and thus the selective pressures to main-

tain them active can be much stronger in environments

other than the standard laboratory ones. In recent studies

hundreds of different chemical and physical stresses were

applied and the proportion of deletions showing substan-

tial growth defects under at least some conditions reached
Current Opinion in Biotechnology 2011, 22:547–551
about 95% in S. cerevisiae and at least 49% in E. coli
[16,17�]. The tested environments were in a sense unna-

tural but they at least helped to show that many genes

become vulnerable to selection when metabolism is dis-
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torted. Careful analysis of conditional growth effects can

be used not only to show that the seemingly dispensable

genes are useful but also what they can be used for [18].

It is also possible that genes were judged dispensable

prematurely, that is, based on experiments that were not

sensitive enough to detect small contributions to fitness.

Indeed, even under standard laboratory conditions small

but statistically significant fitness effects were frequently

found when yeast strains with gene disruptions were

confronted with a wild type strain in relatively long

competition experiments [19]. Precise measurements of

fitness were also used in the study of dispensability of

paralogs originating from the whole-genome duplication

in yeast. Loss of a single duplicate gene usually causes

little harm but it was unsure whether this is because the

duplicates genuinely compensate for each other or are

simply unimportant. Careful estimations of the growth

rate and the level of gene expression in strains lacking

paralogs pointed to the compensation [20,21�]. Extensive

competition experiments were also used to test whether

loss of a dispensable gene can be actually advantageous

instead of being deleterious. In yeast, loss of a gene is

rarely associated with even a small fitness gain suggesting

that there is little selection pressure to lose genes that are

dispensable in a particular environment [22,23]. How-

ever, the assays of fitness have their limits, effects smaller

than about 0.005 are currently difficult to detect. There is

no guarantee that future advances in technology will help

because fitness differences of this size will be always

liable to the obscuring effect of small and thus difficult to

control fluctuations of both the environment and genetic

background.

Core genome
One question pertaining to the unequal importance of

different genes is the rate at which their DNA sequence

changes. In bacteria, essential genes tend to be more

conserved than nonessential over both relatively short

and long time scales [24]. This is only a general trend with

many exceptions because the rate at which protein-cod-

ing genes evolve depends on several factors other than

dispensability [25]. A more direct measure of gene sig-

nificance is its distribution among different taxa. In a

recent analysis of 579 sequenced eubacterial genomes,

about 250 genes (gene families) per genome were ident-

ified as belonging to an ‘extended core’. It means that

they are present in at least 99% of all genomes. The core

set is enriched in genes responsible for replication, trans-

lation, and energy homeostasis [26��]. The number and

functions of the core genes are generally similar to those

of essential genes. However, the genome-wide screens for

essential genes are much fewer than genome sequencing

projects and therefore definite comparisons of their

results may be premature. The majority of an average

bacterial genome is composed by other genes. They are

present in only subsets of genomes and are often charac-
www.sciencedirect.com
teristic for different ecological niches. About a quarter of a

typical bacterial genome still consists of other genes.

These are found in only one or a few species; their variety

is very high; their role is usually unknown but probably

only accessory in most cases [26��]. The existence of core

genes and niche-characteristic genes is compatible with

the concept of a backbone of essential elements on which

the rest of the genome is built [27]. Lateral gene transfer

is omnipresent in bacteria and this could suggest that the

genes accessible for ecological specialization constitute

an effectively unlimited pool. This idea was tested in a

study comparing 96 genome sequences derived from two

closely related sympatric sister species of pathogenic

bacteria (Campylobacter coli and Campylobacter jejuni). It

was found that the two species have similarly sized

genomes. Their core genome contains a number of

species-specific genes and, importantly, demonstrates a

resistance to interspecies recombination [28�]. These data

not only provide support for the hypothesis of core

genome in bacteria but also show that the core genes

can differ even between relatively close species.

Phylogenetic analyses are much less, if at all, effective in

delimiting the core genome of eukaryotes. Five yeast

species that diverged before the whole genome dupli-

cation in the lineage of S. cerevisiae (100–150 million years

ago) were recently sequenced and annotated. Their com-

mon genetic repertoire consists of approximately 3300

protein families, within a pan-proteome of approximately

5000 families for all Saccharomycetaceae. This is far from

any minimal genome without redundancy especially that

the five yeasts contain numerous copies of paralogous

genes that, altogether, constitute a third of each genome

[29�]. The quest to find a minimal gene set is effectively

absent in research on multicellular eukaryotes. This is not

surprising as counting of essential genes is still a problem

there. But, the uncertainty about the number of protein

coding genes is probably not the most important one. Still

more serious are doubts what to count when new import-

ant noncoding elements are being constantly discovered

and their total number cannot be yet anticipated [30].

The very notion of gene dispensability changes pro-

foundly when we look at organisms like us. Considering

the fact that genes which have paralogs of 90% sequence

identity are about three times less likely to harbor known

disease mutations [31] and that every human has about a

hundred of such variants [32], one is left with an impres-

sion that his/her health may be actually secured by some

‘redundant’ or ‘dispensable’ genes.

Gene duplication
The above mentioned phenotypic masking of genetic

damage by close relatives pertains chiefly to genes

involved in metabolism. Such genes constitute a substan-

tial portion of a genome in simple organisms but much

smaller in, say, a mouse. This can be a reason why

deleting one of a duplicate gene is less likely to be lethal
Current Opinion in Biotechnology 2011, 22:547–551
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than deleting a singleton gene in yeasts and worms but

not necessarily in mice [33]. It was actually claimed that in

mouse singletons are as often essential as duplicates but

definite tests are lacking as long as the collection of

knockouts is not representative for the whole genome

[11]. Nevertheless, the already available data suggest that

duplicate genes are more often found among those coding

for development than metabolism. For example, a recent

study reports that new genes in Drosophila are equally

often essential as old ones. Lethality caused by silencing

of the new genes was often attributable to defects show-

ing up at the pupal stage. This suggests an origin of

essentiality through rapid neofunctionalization of a dupli-

cate gene engaged in development [9]. Not only the

expectation that new genes are less important than old

ones but also a common assumption that most new genes

come typically from whole genome duplications was

challenged. In Daphnia as many as 13,000 genes — a very

high number — are paralogs. These genes apparently

arose through frequently occurring tandem duplications

and are enriched in elements responsive to specific eco-

logical conditions. Fine tuned adaptations to the environ-

ment can be another important factor promoting rapid

evolution of new functions even if it is done mostly

through differentiation of duplicate gene expression

[34��]. Together these new findings promise to invigorate

research on specific hypotheses explaining how duplicate,

and thus normally dispensable, genes can avoid inacti-

vation and disappearance [35,36].

Conclusions
A more appropriate name for the dispensable genes

would be the genes of small or rare effects. Incorporation

of such genes into systems biology will be difficult, this is

already well known by students of quantitative and

population genetics. One way out is to simply ignore

the genes of small effects and concentrate on a possibly

minimal set of essential genes. This approach is popular

among researchers in the systems biology of bacteria. Its

promises and challenges were recently reviewed in this

journal [37]. The study of simple eukaryotic cells will

possibly try to enter a similar path because the metabolic

flux in the yeast cell can be modeled as reliably as in

bacteria [38]. It may be much more difficult to build

grand models of gene cooperation in assembling the

cellular ‘hardware’, especially in eukaryotes, even as

simple as yeast. The idea of concentrating on a set of

essential genes and leaving aside dispensable ones is still

less feasible for multicellular eukaryotes. However, the

thorough study of well defined problems, such as the

evolutionary fate and current role of duplicated genes,

can be already seen as the ‘subsystems biology’ with good

prospects for a gradual expansion.
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